Warsaw University of Technology

Faculty of Power and Aeronautical Engineering

WARSAW UNIVERSITY OF TECHNOLOGY

Institute of Aeronautics and Applied Mechanics

Finite element method (FEM)

4-node quadrilateral element

(2D analysis) 4-node quadrilateral element cartesiais coordinate system natural coordinate system (3) (4, 1) 6 (4, 14) (×2.42) E (x1,y,1) (E,X) -> (Y, Z) geometry mapping • ; $(1_1-1) \rightarrow (X_2, Y_2)$ $(-1,-1) \rightarrow (X_1, Y_1)$; $(-1,1) \rightarrow (x_{q},y_{4})$ $(1,1) \rightarrow (x_{3}, y_{3})$

vectors of nodal coordinates $\begin{cases} X_i \\ e \end{cases} = \begin{cases} X_1 \\ X_2 \\ X_3 \\ X_4 \end{cases}, \qquad \begin{cases} Y_i \\ Y_i \\ Y_i \end{cases} = \begin{cases} Y_i \\ Y_2 \\ Y_3 \\ Y_4 \end{cases}$ local vector of nodal parameters Xi n=4, $n_p=2 \rightarrow n_e=n \cdot n_p=8$ 41 1

Isoparametric mapping $x = a + b \cdot \xi + c \cdot p + d \cdot \xi p = [1, \xi, \eta, \xi h] \cdot [c]$ (\$17) (X,y) () (-1,-1) -> (X1, 41) a, b, c, d- $X_1 = 1 \cdot a + (-1) \cdot 6 + (-1) \cdot c + (-1) \cdot (-1) \cdot d$ constants $\stackrel{(2)}{=} (1,-1) \longrightarrow (X_2, Y_2)$ $X_2 = 1 \cdot a + 1 \cdot b + (-1) \cdot c + 1 \cdot (-1) \cdot d$ (3) $(1,1) \rightarrow (\Lambda_3, \gamma_3)$ X3 = 1.9 + 1.6 + 1.c + 1.1.d (4) $(-1,1) \rightarrow (x_{4},y_{4})$ Xq =1a + (-1).b + 1.c + (-1).1.d

(det[4]=-16)

5

.

(4×1+4×2+4×3+4×4) $= \left[1, \xi, \eta, \xi, \eta \right] \cdot \left\{ \begin{array}{c} -\frac{1}{4}x_{4} + \frac{1}{4}x_{2} + \frac{1}{4}x_{3} - \frac{1}{4}x_{4} \\ -\frac{1}{4}x_{4} - \frac{1}{4}x_{2} + \frac{1}{4}x_{3} + \frac{1}{4}x_{4} \\ \frac{1}{4}x_{4} - \frac{1}{4}x_{2} + \frac{1}{4}x_{3} - \frac{1}{4}x_{4} \\ \end{array} \right\}$ $=1\cdot\left(\frac{1}{4}x_{4}+\frac{1}{4}x_{2}+\frac{1}{4}x_{3}+\frac{1}{4}x_{4}\right)+\frac{1}{5}\cdot\left(-\frac{1}{4}x_{1}+\frac{1}{4}x_{2}+\frac{1}{4}x_{3}-\frac{1}{4}x_{4}\right)+$ + b (-4×1-4×2+4×3+4×4)+ 5b (4×1-4×2+4×3-4×4)= + (年+年多+年2+年8)×3+(年-年多+年2-年89)·×9= $= \left(\frac{1-\frac{1}{2}}{4}\right) \left(\frac{1-\frac{1}{2}}{4}\right) \cdot \chi_{1} + \frac{(1+\frac{1}{2})(1-\frac{1}{2})}{4}\chi_{2} + \frac{(1+\frac{1}{2})(1+\frac{1}{2})}{4}\chi_{3} + \frac{(1-\frac{1}{2})(1+\frac{1}{2})}{4}\chi_{4}$ N1 (\$1) · X1 + N2 (\$1) · X2 + N3(\$12) X3 + N4(\$7) · X9

shape functions $N_1 = f(1-\xi)(1-\eta)$ $N_2 = \frac{1}{4} (1+\xi) (1-\eta)$ $N_3 = \frac{1}{3} (1 + \frac{3}{3}) (1 + \frac{1}{7})$ $Nq = \frac{4}{4}(1-\frac{2}{3})(1+p)$ 12.17 2

isoparametric mapping

$$x = \lfloor N(\underline{s}_{1}\underline{v}) \rfloor \cdot \begin{bmatrix} X_{i} \\ J_{e} \\ 1 \times 4 \\ 4 \times 1 \\ Y = L N(\underline{s}_{1}\underline{v}) \rfloor \cdot \underbrace{ \begin{array}{c} Y_{i} \\ Y_{i} \\ 1 \times 4 \\ 1 \times 4 \\ 2 \times 1 \\ 2 \times 8 \\ 8 \times 1 \end{array}}}_{\substack{ 1 \times 4 \\ N \\ 1 \times 4 \\ 1 \times 4$$

 $\begin{bmatrix} N(\xi_1\eta) \end{bmatrix} = \begin{bmatrix} N_1 & O & N_2 & O & N_3 & O & N_4 & O \\ O & N_1 & O & N_2 & O & N_3 & O & N_4 \end{bmatrix}$ 2×8

differential operators in the natural coordinate system: $\frac{\partial}{\partial y} = \frac{\partial}{\partial x} \cdot \frac{\partial x}{\partial y} + \frac{\partial}{\partial y} \frac{\partial y}{\partial y}$ $\widehat{\partial}_{\eta} = \frac{\partial}{\partial x} \cdot \frac{\partial x}{\partial \eta} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \eta}$ [J] - Jacobian matrix. differential operators in the cartesian coordinate system $\begin{bmatrix} 2 \\ \partial x \\ - \\ \partial y \end{bmatrix} = \begin{bmatrix} \frac{1}{det} \begin{bmatrix} 3 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \partial y \\ \partial y \end{bmatrix} - \begin{bmatrix} 1 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \partial y \\ \partial y \end{bmatrix} - \begin{bmatrix} 1 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \partial y \\ \partial y \end{bmatrix} - \begin{bmatrix} 1 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \partial y \\ \partial y \end{bmatrix} - \begin{bmatrix} 1 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \partial y \\ \partial y \end{bmatrix} - \begin{bmatrix} 1 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \partial y \\ \partial y \end{bmatrix} - \begin{bmatrix} 1 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \partial y \\ \partial y \end{bmatrix} - \begin{bmatrix} 1 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \partial y \\ \partial y \end{bmatrix} - \begin{bmatrix} 1 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \partial y \\ \partial y \end{bmatrix} - \begin{bmatrix} 1 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \partial y \\ \partial y \end{bmatrix} - \begin{bmatrix} 1 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \end{bmatrix} \end{bmatrix} - \end{bmatrix} \cdot \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ det \end{bmatrix} \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ det \end{bmatrix} \end{bmatrix} - \end{bmatrix} \end{bmatrix} - \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ det \end{bmatrix} \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ det \end{bmatrix} \end{bmatrix} - \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ det \end{bmatrix} \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ det \end{bmatrix} \end{bmatrix} - \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \begin{bmatrix} 2 \\ det \end{bmatrix} \end{bmatrix} - \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \end{bmatrix} - \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \end{bmatrix} - \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \end{bmatrix} - \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \end{bmatrix} - \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \end{bmatrix} - \end{bmatrix} - \begin{bmatrix} 2 \\ det \end{bmatrix} - \end{bmatrix} - \end{bmatrix} -$

 $det[]=\frac{\partial x}{\partial \xi}\cdot\frac{\partial y}{\partial \eta}-\frac{\partial y}{\partial \xi}\cdot\frac{\partial x}{\partial \eta}=>$ $\frac{\partial x}{\partial \xi} = \frac{\partial \left[L_{ixi}(\xi, \eta) \right] \cdot \left[\frac{\chi_{i}}{\eta_{i}} \right]}{\partial \xi} = \frac{\partial \left[N(\xi, \eta) \right]}{\partial \xi} \cdot \left[\frac{\chi_{i}}{\eta_{i}} \right] + \frac{\partial \left[N(\xi, \eta) \right]}{\partial \xi} +$ O (discrete values) $= \left\lfloor \frac{\partial N_{1}}{\partial \xi}, \frac{\partial N_{2}}{\partial \xi}, \frac{\partial N_{3}}{\partial \xi}, \frac{\partial N_{4}}{\partial \xi} \right\rfloor \cdot \left\{ \begin{array}{c} X_{1} \\ X_{2} \\ X_{3} \\ X_{3} \end{array} \right\} =$ $= \left(-\frac{1}{4}(1-\eta)\right) \cdot X_{1} + \frac{1}{4}(1-\eta) \cdot X_{2} + \frac{1}{4}(1+\eta)X_{3} - \frac{1}{4}(1+\eta)X_{4}$ $\frac{\partial y}{\partial p} = \frac{\partial \left(LN(\xi_1 h) J \cdot \{ y_i \}_e \right)}{\frac{1 \times 4}{\partial p}} = \frac{\partial \left[N(\xi_1 h) \right]}{\frac{1 \times 4}{\partial p}} \cdot \{ y_i \}_e = \frac{\partial \left[N(\xi_1 h) \right]}{\frac{1 \times 4}{\partial p}} \cdot \{ y_i \}_e =$ $= \left(-\frac{1}{4}\left(1-\frac{1}{5}\right)\right) \cdot y_{1} - \frac{1}{4}\left(1+\frac{1}{5}\right) \cdot y_{2} + \frac{1}{4}\left(1+\frac{1}{5}\right) \cdot y_{3} + \frac{1}{4}\left(1-\frac{1}{5}\right) \cdot \frac{1}{5}y_{4}$

 $\frac{\partial (LN(s_1y)) \int \frac{\partial (y_1,y_2)}{\partial x_1}}{\frac{\partial (y_1,y_2)}{\partial x_2}} = \frac{\partial [N(\frac{\varepsilon_1y}{\varepsilon_1y_2})]}{\partial \varepsilon_2} \frac{\int y_1}{\int \frac{\partial (y_1,y_2)}{\partial \varepsilon_2}} = \frac{\partial [N(\frac{\varepsilon_1y}{\varepsilon_1y_2})]}{\partial \varepsilon_2} \frac{\int y_1}{\langle y_1,y_2 \rangle} = \frac{\partial [N(\frac{\varepsilon_1y}{\varepsilon_1y_2})]}{\partial \varepsilon_1} \frac{\partial [N(\frac{\varepsilon_1y}{\varepsilon_1y_2}]}{\partial \varepsilon_1y_2} \frac{\partial [N(\frac{\varepsilon_1y}{\varepsilon_1$ $= (-\frac{1}{4}(1-\frac{1}{2})) \cdot y_{1} + \frac{1}{4}(1-\frac{1}{2}) \cdot y_{2} + \frac{1}{4}(1+\frac{1}{2})y_{3} - \frac{1}{4}(1+\frac{1}{2})y_{4}$ $\frac{\partial \chi}{\partial \eta} = \frac{\partial \left(L^{N}(\xi,\eta) \right] \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} \cdot \left\{ \chi_{i} \right\}_{e_{i}}}{\partial \eta} = \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} - \frac{\partial \left[N\left(\xi,\eta \right) \right]}{\partial \eta} = \frac{\partial \left[$ $= \left(-\frac{1}{4}\left(1-\frac{1}{5}\right)\right) \times_{1} - \frac{1}{4}\left(1+\frac{1}{5}\right) \cdot \times_{2} + \frac{1}{4}\left(1+\frac{1}{5}\right) \times_{3} + \frac{1}{4}\left(1-\frac{1}{5}\right) \cdot \times_{4}$ $\frac{\partial}{\partial Y} = \frac{1}{\det(J)} \left(\frac{\partial Y}{\partial n} \cdot \frac{\partial}{\partial \xi} - \frac{\partial Y}{\partial \xi} \cdot \frac{\partial}{\partial \eta} \right)$ $\frac{\partial}{\partial y} = \frac{1}{\det[I]} \left(\frac{\partial x}{\partial \xi} \cdot \frac{\partial}{\partial \eta} - \frac{\partial x}{\partial \eta} \cdot \frac{\partial}{\partial \xi} \right)$

gradient making for plane stress or plane strain conditions $\begin{bmatrix} R(Y_{1}y) \end{bmatrix} = \begin{bmatrix} 0\\ \partial x & 0\\ \partial y & \partial y \\ \partial y & \partial y \\ \partial y & \partial x \end{bmatrix} = \frac{1}{det[J]} \begin{bmatrix} 0y & \partial y & \partial y \\ \partial y & \partial y \\ \partial y & \partial y \\ \partial y & \partial x \end{bmatrix} = \frac{1}{det[J]} \begin{bmatrix} 0y & \partial y & \partial y \\ \partial y & \partial y \\ \partial y & \partial y \\ \partial y & \partial x \end{bmatrix}$ R(512) strain rector (plane stress, planestrain) $= \left[B(s_1 p) \right] \cdot \left\{ 9 \right\}_e$ stress vector (plane stress, plane strain) $\{ 6 \} = \begin{cases} 6x \\ 6y \\ 7xy \end{cases} = \begin{bmatrix} D \end{bmatrix} \cdot \begin{bmatrix} 2e \\ 8x3 \\ 3x3 \\ 3x1 \end{bmatrix} = \begin{bmatrix} D \end{bmatrix} \cdot \begin{bmatrix} B(\frac{2}{2}) \end{bmatrix} \cdot \begin{bmatrix} 9e \\ 9xy \end{bmatrix} = \begin{bmatrix} 2e \\ 3x3 \\ 3x3 \end{bmatrix} = \begin{bmatrix} 2e \\ 3$

clastic strain energy in a finite clement $\begin{aligned} \mathcal{U}_{e} &= \frac{4}{2} \int \left[\mathcal{E}_{j} \left[\begin{array}{c} \mathcal{E}_{j}^{2} d \mathcal{R}_{e} \\ \mathcal{S}_{e}^{1 \times 3} \end{array} \right]_{3 \times 1} \right] \\ &= \frac{4}{2} t_{e} \int \left[\begin{array}{c} \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} \end{array} \right]_{3 \times 1} \right] \\ &= \frac{4}{2} t_{e} \int \left[\begin{array}{c} \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} \end{array} \right]_{6} \left[\begin{array}{c} \mathcal{E}_{j}^{1} d \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} \end{array} \right]_{6} \left[\begin{array}{c} \mathcal{E}_{j}^{1} d \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} d \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} \end{array} \right]_{4 \times 8} \\ &= \frac{4}{2} t_{e} \int \left[\begin{array}{c} \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} \end{array} \right]_{6} \left[\begin{array}{c} \mathcal{E}_{j}^{1} d \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} d \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} d \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} d \mathcal{E}_{j} d \mathcal{E}_{j} \\ &= \begin{array}{c} \mathcal{E}_{j}^{1} \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} d \mathcal{E}_{j} d \mathcal{E}_{j} \\ &= \begin{array}{c} \mathcal{E}_{j}^{1} \mathcal{E}_{j} \\ &= \begin{array}{c} \mathcal{E}_{j}^{1} \mathcal{E}_{j} \\ &= \begin{array}{c} \mathcal{E}_{j}^{1} \mathcal{E}_{j} \\ \mathcal{E}_{j} \\ \mathcal{E}_{j} \\ \mathcal{E}_{j}^{1} \mathcal{E}_{j} \\ \mathcal{E}_{j}$ where :

 $[k]_{e} = t_{e} \int \left[B[\xi_{1}\gamma_{1}]^{T} [D] \cdot [B(\xi_{1}\gamma_{1})] det[J(\xi_{1}\gamma_{1})] d\xi_{1} d\gamma_{1} d\zeta_{1} d\gamma_{1} d\zeta_{1} d\zeta_{1} d\zeta_{1} d\gamma_{1} d\zeta_{1} d\zeta_{1} d\gamma_{1} d\zeta_{1} d\zeta_{$ (numerical integration)

$$\begin{bmatrix} B(y_{1}\eta) \end{bmatrix} = \begin{bmatrix} R(y_{1}\eta) \end{bmatrix} \cdot \begin{bmatrix} N(y_{1}\eta) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ F_{11} & F_{12} \\ F_{21} & F_{22} \\ F_{31} & F_{32} \end{bmatrix} \begin{bmatrix} N_{1} & O & N_{2} & O & N_{3} & O & N_{4} \\ O & N_{1} & O & N_{2} & C & N_{3} & O & N_{4} \end{bmatrix}$$

$$F_{11} \cdot N_{1} = \frac{\partial y}{\partial 2} \cdot \frac{\partial}{\partial 5} - \frac{\partial y}{\partial 5} \cdot \frac{\partial}{\partial 5} \\ det \begin{bmatrix} J \end{bmatrix} \\ -N_{1} & [S_{12}] \\ det \begin{bmatrix} J \end{bmatrix} \\ -N_{1} & [S_{12}] \\ det \begin{bmatrix} J \end{bmatrix} \\ -N_{1} & [S_{12}] \\ det \begin{bmatrix} J \end{bmatrix} \\ -N_{1} & [S_{12}] \\ det \begin{bmatrix} J \end{bmatrix} \\ -\frac{det \begin{bmatrix} J \end{bmatrix}}{\partial 2} \cdot \frac{\partial y}{\partial 5} - \frac{\partial y}{\partial 5} \cdot \frac{\partial y}{\partial 5} \\ -\frac{\partial y}{\partial 5} - \frac{\partial y}{\partial 5$$

$$V_{11} \cdot N_3 = \frac{4(1+p)\frac{\partial y}{\partial p} - \frac{1}{4}(1+\frac{1}{5})\frac{\partial y}{\partial 5}}{\det[2]} = b_{15} = b_{36}$$

$$V_{11} \cdot N_4 = -\frac{4(1+p)\frac{\partial y}{\partial p} - \frac{1}{4}(1-\frac{1}{5})\frac{\partial y}{\partial 5}}{\det[2]} = b_{17} = b_{38}$$

 $\frac{\partial \xi}{\partial \xi} \cdot \frac{\partial \eta}{\partial \eta} - \frac{\partial \eta}{\partial \xi} \cdot \frac{\partial \xi}{\partial \xi} \cdot N_1(\xi,\eta) = \frac{1}{\det[\Im]} \left(\frac{\partial x}{\partial \xi} \cdot \frac{\partial N_1}{\partial \eta} - \frac{\partial y}{\partial \eta} \cdot \frac{\partial N_1}{\partial \xi} \right)$ $N_{22} \cdot N_{1} =$ $= \frac{-4(1-\xi)\frac{2\xi}{\xi} + 4(1-2)\frac{2\chi}{22}}{= b_{22} = b_{31}}$ det [] $V_{22} \cdot N_2 = -\frac{1}{4} (1+\xi) \frac{\partial x}{\partial \xi} - \frac{1}{4} (1-\xi) \frac{\partial x}{\partial \xi} = b_{24} = b_{33}$ $V_{22} N_3 = \frac{1}{2} \frac{(1+1)}{1+1} \frac{2}{5} - \frac{1}{4} \frac{(1+2)}{5} \frac{2}{5} = b_{26} = b_{35}$ $V_{22} \cdot N_q = \frac{4(1-\xi)}{2\xi} + \frac{2}{3\xi} + \frac{1}{4}(1+\eta)\frac{\partial x}{\partial \eta} = b_{28} = b_{37}$ det [3] b_{11} b_{12} b_{13} b_{14} b_{15} b_{16} b_{17} b_{18} b_{21} b_{22} b_{23} b_{24} b_{25} b_{26} b_{27} b_{28} b31 b32 b33 b34 b35 b36 b37 b38

15

 $\mathcal{U}_{e} = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{X}_{xy}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{X}_{xy} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{X}_{xy}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{X}_{xy} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{y} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{y} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{y} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{y} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot \begin{bmatrix} \mathcal{E}_{y} \\ \mathcal{E}_{y} \\ \mathcal{E}_{y} \end{bmatrix} dSle = \frac{4}{2} \int [\mathcal{E}_{x}, \mathcal{E}_{y}, \mathcal{E}_{y}] \cdot [D] \cdot [D$ $=\frac{1}{2}\int \left[\mathcal{E}_{x_{1}}\mathcal{E}_{y_{1}}O\right] \left[D\right] \cdot \begin{cases} \mathcal{E}_{x_{1}} \\ \mathcal{E}_{y_{1}} \\ \mathcal{O} \\ \mathcal{$ Ue (normal stress) Ue (shear stress) $\begin{cases} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{O} \end{cases} = \begin{bmatrix} \mathcal{A} & \mathcal{O} \\ \mathcal{O} & \mathcal{A} \\ \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} \\ \mathcal{O} \end{bmatrix} \begin{cases} \mathcal{U}_{x}^{2} = \begin{bmatrix} \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal$ $[B_{E}] = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{18} \\ b_{21} & b_{22} & \dots & b_{28} \\ 0 & 0 & \dots & 0 \end{bmatrix}, \ [B_{0}] = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ b_{31} & b_{32} & \dots & b_{38} \end{bmatrix}$

 $[k_{\varepsilon}]_{\varepsilon} = t_{\varepsilon} \int \int ([B_{\varepsilon}]^{T} [D] [B_{\varepsilon}]^{2} d\varepsilon t [J(s_{1})]) d\varepsilon d\varepsilon$ $[k_{\delta}]_{e} = t_{e} \int \left([B_{\delta}]^{T} [D] [B_{\delta}] det [J(s_{12})] ds_{s} dy \right)$ $[k]_{e} = [k_{e}]_{e} + [k_{b}]_{e}$

Example: 4-node quadrilateral FE. E=2.105MPa (mm) .3 te = 1mm { $Xi_e^2 = \begin{cases} 2\\6\\6\\6 \end{cases}$; { $yi_e^2 = \begin{cases} 1\\1\\4\\6\\6 \end{cases}$; { $yi_e^2 = \begin{cases} 1\\1\\4\\4\\6\\6\\6 \end{bmatrix}$; 1 1 × (mm)

 $X_4 = X_1, X_3 = X_2, Y_2 = Y_1, Y_4 = Y_3$

$$\frac{\partial x}{\partial \xi} = \left(-\frac{4}{4}(1-\eta)\right) \cdot x_{1} + \frac{4}{4}(1-\eta) \cdot x_{2} + \frac{1}{4}(1+\eta) \cdot x_{3} - \frac{4}{4}(1+\eta) \cdot x_{4} = \\ = \left(-\frac{4}{4}(1-\eta) - \frac{4}{4}(1+\eta)\right) \cdot x_{1} + \left(\frac{4}{4}(1-\eta) + \frac{4}{4}(1+\eta)\right) \cdot x_{2} = \\ = -\frac{4}{2} \cdot x_{1} + \frac{4}{2} \cdot x_{2} = \frac{4}{2} \cdot \left(x_{2} - x_{1}\right) = \frac{4}{2} \cdot \left(6 - 2\right) = 2 mm \\ \frac{\partial y}{\partial \eta} = \left(-\frac{4}{4}(1-\xi)\right) \cdot y_{1} - \frac{4}{4}(1+\xi) \cdot y_{2} + \frac{4}{4}(1+\xi) \cdot y_{3} + \frac{4}{4}(1-\xi) \cdot y_{4} = \\ = \left(-\frac{4}{4}(1-\xi) - \frac{4}{4}(1+\xi)\right) \cdot y_{1} + \left(\frac{4}{4}(1+\xi) + \frac{4}{4}(1-\xi)\right) \cdot y_{3} = \\ = -\frac{4}{2} \cdot y_{1} + \frac{4}{2} \cdot y_{3} = \frac{4}{2} \cdot \left(y_{3} - y_{1}\right) = \frac{4}{2} \cdot \left(4 - 1\right) = 1.5 mm \\ \end{array}$$

$$\frac{\partial y}{\partial \xi} = (-\frac{A}{4}(1-\eta)) \cdot y_{1} + \frac{A}{4}(1-\eta) \cdot y_{2} + \frac{A}{4}(1+\eta) \cdot y_{3} - \frac{A}{4}(1+\eta) \cdot y_{4}^{11} =
= 0 \cdot y_{1} + 0 \cdot y_{3} = 0 \qquad (x_{2}) \qquad (x_{1}) \\ \frac{\partial x}{\partial \eta} = (-\frac{A}{4}(1-\xi)) \cdot x_{1} - \frac{A}{4}(1+\xi) \cdot x_{2} + \frac{A}{4}(1+\xi) \cdot x_{3} + \frac{A}{4}(1-\xi) \cdot x_{4}^{11} =
= 0 \cdot x_{1} + 0 \cdot x_{2} = 0
det [J] = \frac{\partial x}{\partial \xi} \cdot \frac{\partial y}{\partial \eta} - \frac{\partial y}{\partial \xi} \cdot \frac{\partial x}{\partial \eta} = 2mm \cdot 1.5mm - 0 \cdot 0 = 3mm^{2}$$

Strain-displacement matrix:

$$b_{12} = b_{14} = b_{16} = b_{18} = b_{21} = b_{23} = b_{25} = b_{27} = 0$$

$$b_{11} = b_{32} = -\frac{4}{4} (1-\eta) \cdot 1.5mm + \frac{4}{4} (1-\frac{5}{2}) \cdot 0mm = -\frac{1}{8} (1-\eta) \frac{4}{mm}$$

$$b_{13} = b_{34} = \frac{4}{4} (1-\eta) \cdot 1.5mm + \frac{4}{4} (1+\frac{5}{2}) \cdot 0mm = \frac{4}{8} (1-\eta) \frac{4}{mm}$$

$$b_{15} = b_{36} = \frac{4}{4} (1+\eta) \cdot 1.5mm - \frac{4}{4} (1+\frac{5}{2}) \cdot 0mm = \frac{4}{8} (1+\eta) \frac{4}{mm}$$

$$b_{17} = b_{38} = -\frac{4}{4} (1+\eta) \cdot 1.5mm - \frac{4}{4} (1-\frac{5}{2}) \cdot 0mm = -\frac{4}{8} (1+\eta) \frac{4}{mm}$$

$$b_{17} = b_{38} = -\frac{4}{4} (1+\eta) \cdot 1.5mm - \frac{4}{4} (1-\frac{5}{2}) \cdot 0mm = -\frac{4}{8} (1+\eta) \frac{4}{mm}$$

Strain-displacement matrix:

$$b_{22} = b_{31} = \frac{-\frac{4}{4}(1-\frac{5}{2}) \cdot 2mm + \frac{4}{4}(1-\eta) \cdot 0mm}{3mm^2} = -\frac{1}{6}(1-\frac{5}{2}) \frac{4}{mm}$$

$$b_{24} = b_{33} = \frac{-\frac{4}{4}(1+\frac{5}{2}) \cdot 2mm - \frac{4}{4}(1-\eta) \cdot 0mm}{3mm^2} = -\frac{1}{6}(1+\frac{5}{2}) \frac{4}{mm}$$

$$b_{26} = b_{35} = \frac{\frac{4}{4}(1+\frac{5}{2}) \cdot 2mm - \frac{4}{4}(1+\eta) \cdot 0mm}{3mm^2} = \frac{1}{6}(1+\frac{5}{2}) \frac{4}{mm}$$

$$b_{28} = b_{37} = \frac{\frac{4}{4}(1-\frac{5}{2}) \cdot 2mm + \frac{4}{4}(1+\eta) \cdot 0mm}{3mm^2} = \frac{4}{6}(1-\frac{5}{2}) \frac{4}{mm}$$

$$\begin{bmatrix} B(\xi_1 \eta) \\ 3 \times 8 \end{bmatrix} = \begin{bmatrix} -(1-2)/8 & 0 & (1-2/8 & 0 & (1+2)/8 & 0 \\ 0 & -(1-\xi)/6 & 0 & -(1+\xi)/6 & 0 & (1+\xi)/6 & 0 & (1-\xi)/6 \\ -(1-\xi)/6 & -(1-2)/8 & -(1+\xi)/6 & (1-2)/8 & (1+\xi)/6 & (1+2)/8 & (1-\xi)/6 & -(1+2)/8 \\ 1 \\ mm & & & & \\ \end{bmatrix}$$

Strain-displacement matrix:

Case 1. "Bending"

G B/ 2

Strain components:

$$\begin{aligned} \mathcal{E}_{x}^{(3)} &= \mathcal{E}_{x}^{(4)} = \frac{\Delta l_{34}}{l_{34}} = \frac{-0.002 \, mm}{4 \, mm} = -0.5 \cdot 10^{-3} \\ \mathcal{E}_{x}^{(4)} &= \mathcal{E}_{x}^{(4)} = \frac{\Delta l_{12}}{l_{42}} = \frac{0.002 \, mm}{4 \, mm} = 0.5 \cdot 10^{-3} \\ \mathcal{E}_{y}^{(4)} &= \mathcal{E}_{y}^{(4)} = \mathcal{E}_{y}^{(3)} = \mathcal{E}_{y}^{(4)} = 0 \\ \mathcal{E}_{y}^{(4)} &= \mathcal{E}_{y}^{(4)} = \mathcal{E}_{y}^{(4)} = \mathcal{E}_{y}^{(4)} = 0 \\ \mathcal{E}_{y}^{(4)} &= \mathcal{E}_{y}^{(4)} = \frac{11}{2} - \beta_{L} \approx \frac{(0.001 - (-0.001)) \, mm}{3 \, mm} = 0.667 \cdot 10^{-3} \\ \mathcal{E}_{xy}^{(4)} &= \mathcal{E}_{xy}^{(4)} = \frac{11}{2} - \beta_{R} \approx \frac{(0.001 - (-0.001)) \, mm}{3 \, mm} = -0.667 \cdot 10^{-3} \\ \mathcal{E}_{xy}^{(4)} &= \mathcal{E}_{xy}^{(4)} = \frac{11}{2} - \beta_{R} \approx \frac{(0.001 - (-0.001)) \, mm}{3 \, mm} = -0.667 \cdot 10^{-3} \end{aligned}$$

Stress components:

$$\begin{aligned} G_{x}^{(0)} &= G_{x}^{(0)} = \frac{E}{1 - v^{2}} \left(E_{x}^{(0)} + v E_{y}^{(0)} \right) = \frac{2 \cdot 10^{5} \, \text{M/a}}{1 - 0.3^{2}} \cdot 0.5 \cdot 10^{-3} = 109.89 \, \text{M/a.} \\ G_{x}^{(0)} &= G_{x}^{(0)} = \frac{E}{1 - v^{2}} \left(E_{x}^{(0)} + v E_{y}^{(0)} \right) = -109.89 \, \text{M/a.} \\ G_{y}^{(0)} &= G_{y}^{(0)} = \frac{E}{1 - v^{2}} \left(E_{y}^{(0)} + v E_{x}^{(0)} \right) = \frac{2 \cdot 10^{5} \, \text{M/a}}{1 - 0.3^{2}} \cdot 0.3 \cdot 0.5 \cdot 10^{-3} = 32.97 \, \text{M/a.} \\ G_{y}^{(0)} &= G_{y}^{(0)} = \frac{E}{1 - v^{2}} \left(E_{y}^{(0)} + v E_{x}^{(0)} \right) = -32.97 \, \text{M/a.} \\ T_{xy}^{(0)} &= T_{xy}^{(0)} = \int_{xy}^{\infty} G = 0.667 \cdot 10^{-3} \cdot \frac{2 \cdot 10^{5} \, \text{M/a.}}{2(1 + 0.3)} = 51.28 \, \text{M/a.} \\ T_{xy}^{(0)} &= T_{xy}^{(0)} = \int_{xy}^{\infty} G = -51.28 \, \text{M/a.} \end{aligned}$$

Strain and stress components at the center (point C):

$$\mathcal{E}_{x}^{c} = 0$$
, $\mathcal{E}_{y}^{c} = 0$, $\mathcal{Y}_{xy}^{c} = 0$ \Longrightarrow $\mathcal{E}_{x}^{c} = 0$
 $\mathcal{E}_{y}^{c} = 0$
 $\mathcal{E}_{y}^{c} = 0$
 $\mathcal{E}_{y}^{c} = 0$
 $\mathcal{E}_{xy}^{c} = 0$

109.89 32.97 51.28

$$\begin{aligned} u_e &= \frac{1}{2} \int \left[\sum_{x > 3} \frac{1}{5} \int \frac{1}{5} \int \frac{1}{2} \int \frac{1}{5} \int \frac{1}{5} \left[\frac{1}{5} \left[\frac{1}{5} \left[\frac{1}{5} \right] \right] \cdot \int \frac{1}{5} \int \frac$$

$$= \begin{pmatrix} n = 1 \\ \xi_{1} = 0 \\ \eta_{1} = 0 \\ \eta_{4} = 0 \\ W_{4}W_{4} = 4 \end{pmatrix} = \frac{1}{2} t_{e} \left[\xi(0,0) \right] \cdot \left\{ 5(0,0) \right\} \cdot det \left[J(0,0) \right] \cdot W_{4}W_{4} = 0$$

$$= \begin{pmatrix} n = 1 \\ \xi_{1} = 0 \\ \eta_{4} = 0 \\ W_{4}W_{4} = 4 \end{pmatrix} = \begin{bmatrix} \xi(0,0) \\ \eta_{4} = 0 \\ \xi_{2} = 0 \\ \xi_{3} = 1 \\ \xi_{3} =$$

$$= \mathcal{U}_e^{\gamma} = \mathcal{O}_{\mathcal{U}_e}^{\delta} = \mathcal{O}$$

NUMERICAL INTEGRATION,
$$n = 2$$

$$\int_{1/2}^{1/2} \int_{1/2}^{1/2} \int_{1/2}^{$$

 $U_{e}^{5} = \frac{4}{2} \lfloor q \rfloor_{e} \cdot t_{e} \cdot \int \left[B_{e}(\xi_{1}, \eta) \right]^{T} \cdot \left[D \right] \cdot \left[B_{e}(\xi_{1}, \eta) \right] det \left[J(\xi_{1}, \eta) \right] d\xi d\eta \left\{ q \right\}_{e} = \frac{1 \times 8}{1 \times 8} - 1 - 1 \cdot \frac{8 \times 3}{3 \times 3} \cdot \frac{3 \times 8}{3 \times 3} \cdot \frac{3 \times 8}{3 \times 8}$ = 0,1099 Nmm $U_{e}^{\gamma} = \frac{1}{2} \lfloor \frac{9}{2} \rfloor \dot{e} \dot{t} \dot{e} \cdot \int \left[B_{g}(\frac{1}{2}) \right]^{T} \left[D \right] \cdot \left[B_{g}(\frac{1}{2}) \right] det \left[J(\frac{1}{2}) \right] dgd \cdot \left\{ 9 \right\}_{e}^{2} = \frac{1}{2} \lfloor 9 \rfloor \dot{e} \dot{t} \dot{e} \cdot \int \left[B_{g}(\frac{1}{2}) \right]^{T} \left[D \right] \cdot \left[B_{g}(\frac{1}{2}) \right] det \left[J(\frac{1}{2}) \right] dgd \cdot \left\{ 9 \right\}_{e}^{2} = \frac{1}{2} \lfloor 9 \rfloor \dot{e} \dot{t} \dot{e} \cdot \int \left[B_{g}(\frac{1}{2}) \right] dgd \cdot \left\{ 9 \right\}_{e}^{2} dg \cdot \left\{ 9 \right\}_{e}^{2} dg$ = 0.0684 Nmm

.

$$\frac{\text{(a se 2.) Shear ''}}{(u)} = \frac{(u)}{(u)} = \frac{(u)}{(u$$

 $\begin{cases} \xi \xi \\ = \begin{cases} \xi \\ \xi \\ \partial x y \\ \end{pmatrix} = \begin{bmatrix} B(\xi, y) \\ B(\xi, y) \\ \vdots \\ B(\xi, y) \end{bmatrix} \cdot \begin{bmatrix} g \\ g \\ \xi \\ \vdots \\ \end{pmatrix} = \begin{cases} \xi \\ y \\ y \\ \end{bmatrix} \cdot \begin{bmatrix} g \\ \xi \\ y \\ \end{bmatrix} \cdot \begin{bmatrix} g \\ y \\ y \\ \end{bmatrix} \end{bmatrix} \cdot \begin{bmatrix} g \\ y \\ y \\ \end{bmatrix} \cdot \begin{bmatrix} g \\$ $\begin{bmatrix} 0 \\ 0 \\ 0.33 \cdot 10^3 \end{bmatrix}$ Duniform C $\{ 5 \} = \begin{cases} 6 \times \\ 6 \times \\ 6 \times \\ 7 \times y \end{cases} = \begin{bmatrix} D \\ 3 \times 3 \\ 3 \times 3 \\ 3 \times 1 \end{bmatrix} \cdot \begin{cases} 4 \times 2 \\ 7 \times 2 \\ 7 \times 1 \end{bmatrix} = \begin{bmatrix} 1 \times 2 \\ 7 \times 1 \\ 0 \\ 0 \\ 2 \times 1 \end{bmatrix}$ (L {5} $\int O Z_{-}$

36

elastic strain energy n=1 $W_{4}W_{4}=4$ * $U_e = \frac{1}{2} L_{9} \frac{1}{e} \cdot [k]_e \cdot [q]_e = 0.0513$ Nmm $u_e^{\gamma} = u_e$ $u_e^{\sigma} = 0$

青清) n=2Wy=Wz=L

Ue = 0.0513Nmm $\mathcal{U}_e^{\sigma} = 0$, $\mathcal{U}_e^{\gamma} = \mathcal{U}_e$

Case 3 = Case 1 + Case 2 " bending + shear" B -0.001 (ui 0.001 (uz) 0 ((u1) (mm) 0 0.002 0 (u4) (1)

$$\begin{cases} E_{3}^{L} = \begin{cases} E_{3}^{L} = \begin{bmatrix} B_{3}^{L} \\ M_{1} \end{bmatrix} \begin{bmatrix} B_{3}^{L} \\ M_{2} \end{bmatrix} \begin{bmatrix} 0 \\ M_{1} \end{bmatrix} \begin{bmatrix} 0 \\ M_{2} \end{bmatrix} \begin{bmatrix} 0 \\ M_{1} \end{bmatrix} \begin{bmatrix} 0 \\ M_{2} \end{bmatrix} \begin{bmatrix} 0 \\ M_{1} \end{bmatrix} \begin{bmatrix} 0 \\ M_{2} \end{bmatrix} \begin{bmatrix} 0 \\ M_{1} \end{bmatrix} \begin{bmatrix} 0 \\ M_{1} \end{bmatrix} \begin{bmatrix} 0 \\ M_{1} \end{bmatrix} \begin{bmatrix} 0 \\ M_{2} \end{bmatrix} \begin{bmatrix} 0 \\ M_{2}$$

clastic strain energy n=2 n = 1 $Ue = \frac{1}{2} L_{9} J_{e} \left[k J_{e} \left\{ 9 \right\}_{e}^{2} = 0.0513 \right]$ 1×8 8×8 8×1 Nmm $U_{e} = 0.22955 Nmm$ Ue⁶= 0.1099 Num $\mathcal{U}_{e}^{6} = \frac{1}{2} L \mathcal{G}_{e} [k_{E}] \int_{\mathcal{G}_{e}}^{\mathcal{G}_{e}} = 0$ $\lim_{k \neq k} \sum_{k \neq k} \sum_{k \neq k}^{\mathcal{G}_{e}} \sum_{k \neq k}^{\mathcal{G}_{e}}$ $u_e^{\tau} = \frac{1}{2} L_g J_e [k_s] \{ q_{e}^2 = 0.0513 Nnm$ $U_e^{\gamma} = 0.1197$ Nmm = Ue Ue = 52% Ue We (cases) = Ue (cases) + Ue (case 2) = =(0.0684 + 0.0513) Nmm = = C. 1197 Nmm shedu locking 40

Summary

CASE	n=1			n=2		
Ue [Nmm]	4e ⁶	Uet	lle	Uee	Uer:	Ue
1. "BENDING"	0	0	0	0.1099	0.0684	0,1783
2. SHEAR "	0	0.0513	0,0513	0	0.0513	0.0513
3., BENDING + SHEAR	0 11 (0+0)	0.0513 11 (0+0.0513)	0,0513 (0+0.0513)	0.1099 II (0 + 0,1099)	0.1197 11 (0.0513+ 0.0684)	0.22955 11 0.0513+ 0.1783

Mixed quadrature rule

Full integration (n = 2):

Reduced integration (n = 1): $\mathcal{U}_{e}^{\mathcal{T}} = \frac{1}{2} \mathcal{L}_{g} \mathcal{J}_{e} [k_{s}]_{g} = 0.0513 Nnm$ $1 \times 8 = \mathcal{U}_{e}$

$$u_e = u_e^{\epsilon} + u_e^{\tau} = 0.16117 Nmm$$

– volumetric locking in nearly incompressible materials ($\nu \cong 0.5$)

Element technology - linear materials

Element	Stress State	Poisson's ratio <= 0.49	Poisson's ratio > 0.49 (or anisotropic materials)
PLANE182	Plane stress	KEYOPT(1) = 2 (Enhanced strain formulation)	KEYOPT(1) = 2 (Enhanced strain formulation)
	Not plane stress	KEYOPT(1) = 3 (Simplified enhanced strain formulation)	KEYOPT(1) = 2 (Enhanced strain formulation)
PLANE183	Plane stress	No change	No change
	Not plane stress	No change	No change
SOLID185		KEYOPT(2) = 3 (Simplified enhanced strain formulation)	KEYOPT(2) = 2 (Enhanced strain formulation)
SOLID186		KEYOPT(2) = 0 (Uniform reduced integration)	KEYOPT(2) = 0 (Uniform reduced integration)
SHELL281		No change	No change

(+extra displacement shapes functions)

Shear Locking and Hourglassing in MSC Nastran, ABAQUS, and ANSYS

Eric Qiuli Sun

Abstract

A solid beam and a composite beam were used to compare how MSC Nastran, ABAQUS, and ANSYS handled the numerical difficulties of shear locking and hourglassing. Their tip displacements and first modes were computed, normalized, and listed in multiple tables under various situations. It was found that fully integrated first order solid elements in these three finite element codes exhibited similar shear locking. It is thus recommended that one should avoid using this type of element in bending applications and modal analysis. There was, however, no such shear locking with fully integrated second order solid elements. Reduced integration first order solid elements in ABAQUS and ANSYS suffered from hourglassing when a mesh was coarse. If there was only one layer of elements, the reported first mode of the beam examples from ABAQUS and ANSYS was excessively smaller than the converged solutions due to hourglassing. At least four layers of elements should, therefore, be used in ABAQUS and ANSYS. MSC Nastran outperformed ABAQUS and ANSYS by virtually eliminating the annoying hourglassing of reduced integration first order 3D solid elements because it employed bubble functions to control the propagation of non-physical zero-energy modes. Even if there was only one layer of such elements, MSC Nastran could still manage to produce reasonably accurate results. This is very convenient because it is much less prone to errors when using reduced integration first order 3D solid elements in MSC Nastran.

https://moodle.umontpellier.fr/pluginfile.php/480056/mod_resource/content/0/Sun-ShearLocking-Hourglassing.pdf